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COMPRESSIBLE FLOW THROUGH REED VALVES
FOR PULSE JET ENGINES

II. CLAMPED REED VALVES

Paul Tord&

INTRODUCTION

In a previous report, Ref. 1, the a,- inflow through automatically operating hinged reed

valves was treated. Ibis paper deals with the inflow analysis between clamped reed valves

used on conventional pulse jet engines. For a detailed discussion af backgrouid reference

should be made to Ref. I.

Again, as in Bef. 1, the basic postulate is made that the reeds form smooth nozzles dur-

ing their motion, thereby increasing the inflow efficiency. Since the bending stresses are [

reduced by eliminating oscillations about the momentarily bent shapes of the reeds, the reed

endurance will also be increased.

This analysis, as the one Ref. 1, was based on the th,.ury of non-steady, compressible,

non-viscous flow with isentropic change of state of the gas, and employs a quasi-one-dimen-

sional approach. The resulting non-linear differe..tial equations have been integrated in

closed form. To solve the problem in a general manner, the time variation of the flow ve-

locity at an arbitrary time and arbitrary cross section of the reed nozzle was prescribed

and the corresponding pressure distribution on the combustion chamber side of the reeds was

calculated, The inverse method would allow particular numerical solutions only. The pre-

scribed boundary and transition conditions have been satisfied. Although the exact transi-

tion conditions between the inflow and the aero-thermodynamic proc- &s of the engine were not

known because of lack of experimental as well as theoretical evidence, it is thought that a

sufficiently broad rarIge of such conditions is covered in the analysis as to include all ex-
perimentally or theoretically determined transition conditions likely to arise in future

investigations.

AIR INFLOW ANALYSIS

In this analysis the flow upstream of the valves has been assumed to be parallel to the

valve center planes, i.e. a short cowl of large diameter was assumed ahead of the valve bank,

which is built up of a large number of individual valves.
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The quasi one-dimansional approach used takes into account the tiar end space

variation of area, flow pressure, and flow velocity between the reeds. The analysis con- I]
siders non.steady, compressible, non-viscous flow between clamped reed valves with iaentropic

change of state during the period of opening.

By satisfying the Euler dynamic equations, the continuity equation, and the equation of

change of state, and by prescribing that the momentary nozzle shapes be smooth, the flow
variables between a pair of reeds were determined. The interaction between the inflow con-

ditions, the valves, and the combustion chamber oressure is taken into account by additionally

satisfying the equation of forced reed vibration. Thus, the pressure variation on the com-

bustion chamber side of the reeds is calculated as a result of the analysis. The use of the

results for design purposes is discussed in the beginning of section (C),

The basic equations and part of their integration are identical to those for the hinged

valves, Ref, 1. T1hus only the basic equations and the main steps of integration rather than

all the intermediate steps are giver in .ýiis analysis.

A complete list of symbols is included at tne end of the report.

(A) NOTATION AND BASIC EQUATIONS DEFINING THE FLD% ,

The following notation is ust d in this analysis, see Figure 1:

A = A(x,t) cross sectic.nal area between a pair of reeds

p = P(X,t) density of k.as

p = p(x,t) pressure of the gas

U = U(xt) velocity of the flow in x direction

x space variable

time variable (a.l)

y - adiabatic constant
CV

co and cv specific heat of the gas at constant pres-
sure and constant volume respectively.

subscript 0 free stream conditions

The equation of continuity is

a(pA) 3(10lu) (a.2)

at ax
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FIGURE 1

"The Euler dynamic equation of motion is
au au 1 ap

The equation of isentropic change of state is I

P p_) (9-4)

P0 Po

(B) INTEGRATION OF THE BASIC EQUATIONS

A new variable, tne product of density and cross-sectional area, is introduced as

9 = B(x,t) = O(x,t) A(x,' ) (1'.l)

and the continuity equation (a,2) can then be integrated to yield

-= [- S.-dx I Kl(t)J (b.2)

where K,(t) is an arbitrary function of time arising in the integration.

It is assumed that in the solution of equation (b.1) the variables are separable, say

B(x,t) X(x) T(t) (b.3)
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then

X(x) - beCX (b.4)

satisfies all the eqution.s and yields desirable valve shapes.

Expressing (b.2) in terms of (b.3) and (b.4), yields

I K( 1 dTU ;-ý X t cT dt (b.5)

Denoting

PoV (b.6)

expressing a/a( from equation (a.4), using (b.5) for U and its derivatives, and then substitu-

ting these values into the Euler dynamic equation (a.3) and integrating, the following expression

is iound for the density I4 2 -T_2 1 2 C X I-' i
t2 ~ -)V, -2CcX•t C d. dt t.•-•• I • '' - . • 2(K. + c -t • i

where K,.(t) is an arbitrary function of time arising in the integration, (b.7)

Inserting (b.7) in (b.3), the expression for the area variable can be written as
(b.8)

{ 21 T 1 g!T )2 e'CX e di1(LTdt 1 ~ d cit)) +bT K" dtA(Xt) dtZ -- -- (K(t)}2  
- - + KT(t)t

The expressions for velocity (b.5), density (b.7), and ares distribution (b.8) are general

solutions of the basic equations. They contain arbitrary constants and arbitrary functions of I-

time which have to be determined from the conditions .rescribed by the particular problem.

(C) SOLUTION~ OF THE BOUNDARY VALUE PRBLf~EM

The function ',( t) describing the time history of inflow and valve opening is as yet unde-

termined. The transition conditions between the inflow and the aero-thermodynamic process of

the combustion chamber should be used to determine this function. This was not possible since

the transition conditions involved were unknown. The determination of T(t) was effected thus-

If it is assumed that the velocity function at the entrance, u(O,t), is known by some -mans

then the function T(t) can be evaluated. By prescribing such functions u(o,t) = f(t) of various

nature, T(t) was determined. The vclocity, density, and pressure in the flow, and the area

4?
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dirstibotion of the reed valves were calculated fat each selected function uto,t) f(t). The

examples included are insufficient for design use. Towards this end, many more examp)les

should be calculated by the method given in this paper. It would then be possible to select

the proper valve parameters- for any particular design problem by comparing the results of such

examples with the combustion chamber pressure variation of interest.

The initial and boundary conditions of the present problem are assumed as follows:

I. The area between a pair of reeds mist be a constant at the entrance (x=o) for any

time Wt).

2. The reeds are&.clamoed, i.e,, the tangent of the reeds at x=3 must be a constant

during the whole valve motion.

3. The appropriate velocity function, selected for thie evaluation of T(M), must be pre-

scribed.

4. At the start of the inflow (t=O), the density at the inlet section (X=O) was assumed

to be the stagnation density (OS), and the inlet area constant,

S. The start of the inflow (t=o) was chosen at a time when the reeds already are open

slightly. This allowed the use of an exponential function for the space function

X(W) of the analysis, Should the starting time be chosen when the valves are fully

closed, an additive space function would have to be used in order that the area be

zero at x-h. The use of such an additive function would only complicate the already

lengthy numerical work and would not yield significant results, since at the beginning

of the reed movement the flow is well behaved. Therefore, the additive space function

was left out and only the ex.onential term of the space function used. H1owever, the

timn interval (At) during which the valves open slightly together with the amount of

the slight opening [A(h,o)] can be made arbitrarily small without adverse effects on
tne results.
At the start the density distribution along X should be nearly constant and even at

-xh should be equal approximately to the stagnation density (ps).

6. At the end of the opening (trt 1 ), the density at the exit section, p(h,t,), and theI; exit area, 4(h,t 1 ), should have prescribed values,

The above conditions can be stated mathematically 0s:

1. l A(O, t) = A°' t A°'°0

2. ( -- const.

3. u(O, t) f(t)• ~(c.l) i
4. B(O,O) psAo,o osAo,t

5. B(h,O) ' PsAh,o

6. B(h,ti) I 1 psA 0 ,o



where 

2
Aho area At x-h, t:O

stagnati'm density

constants

f( t =given f¢nction Of tine

time needed for opening of the valves

T = tangent of the reed at built in end-

Using the boundary value (cl.1), expression (b.8) for the area distribution allows the

evaluation of the arbitrary time function K.,(t)"

�_ Ao (t-'} [ (t)) 2  dK(t) t (c.2)t
K,(t -i*"-•+ T bcT"

T'he boundary value (cl.2), together with the derivative of the area (h.3ý with respect

to x, yields the following differential equation in 'rt) and 'K(t)

c dT~ ) (K K
S -- Tdt + -72 T- bTdt

) F

Condition (cl. 3 ) used in conjunction with equation (c. '• ,--ids a linear differential equationa

in a new var-nbie

V T=

in the following manner:

-'he veLocity function (b.S) for x=O yields

U(O ,t) K ( d T (cN5)
uK,(t) 1 ciTdt ft

frown which

J t I dT] (c. 6)

K 1(t) - bT[ f t) + ---6I cT dt



Substituting (c.6) into equation (c.3) and introducing the new variable, V. as given by (c.4),

the linear first order differential equationi resulting for v is

dv d 1Y C t 1Y)LC

aWd its solution

(ly ) [cf t) - fd dt xc8

v(t) e L

f e(

where (9 is an arbitrary co.astant arising in the integration,

Once v(t) has been evaluated, the whole time history of the inflow and reed movement is

determined, since T(t), and thus A(x,t), o(x,t), p[x,t), and U(X,t), can be expressed.

The choice of f(t) determines whether v(t) can be expressed in a closed form. In such I

cases where the desired u(o,t)=f(t) does not lend itself to a closed form solution for v,,),

the comxputations must be made using numerical methods, e.g. graphical integration.

Four different functions f(t) were selected as examples and the special solutions pre-

sented.

(D) SPECIAL SOLUTIONS I
The four functions u(o,t)ýf(t), for which calculations are presented, were prescribed as

Case I - u(o,t) ý f(t) - !A
n+t

Case II - u(o,t = f(t) = itent + i,.

Case III - u(o,t) f(t) =

Case IV - u(o,t) ft) = const. 1
In the following detailed analysis for Case I is given. For the other cases the analysis

is similar, therefore, only the final results are included.

Case I. Expression (c.8) gives the general solution of the differential equatioji for

T(-v in terms of f(t). Using (d.l) for this case, or H

u(o,t)}- f(t) = - (d.l)
n+t

7



anld ealuaating the inte~pais V(L) C"i b~e Cm~cu1.ted.
W ith

S(1-y)dcf(t) dfý )t) = (1y (cn- d~t!]t)
fd t n+t fdt

= (~(n~t)mO(1-")+ LOge(n+t)(i")= 1olie(f+t)('-)P)(trc+1)

Fv( ti -(-y OE (n)t)Y '(cmn+i (d.2)
in (1-y)(cmn+1)+2

Then, from (c.4)

T( t ;3( yl(t) +(n+ L)~~ Y-(Cm+1) (d,3)

Using (d.3) for T(t) and its de-ivat~ives and substituting themi into (c.6), the arbitrary

tim~e function, K,(t), as determined fromi conditioni (cl.3), becocms

K,'t V~t C + 1 SV t)~ 2a(y-1)(n+t) +

+ ~3 y-1)em+J.I(n+ t)[(YI)Mr+)I]I

where 00t is given by (d.2).

Wvith this value of K,(L), the area expression (b.8) be-comes

A(x,t) -becx(v(tI] fPp(X't))`(dS



andckthe ex(Ytascrn for the density

F(~t -

(n~)2[y~ex~1~2C1Y)x+1e"
F CM )2c

2  +

m~cm(1.~~~cX),2(1X CX] , 0

rnm~ -- eit

2a +~(r+1)(cm+t) (n )(m 2I (Cm+ I+

Lm1yCM[ 1)Y(C+2] 2

ý(o m~l) (n+to (ci .4)m 1

M(ly(m~lUy(m12]m+

B~h ~ I Ah -y) (cl.5I

be~i+ + yt)- '~~+) (d.6)

m[-ycr+1+2 CdC

(d7

2a)CI)2 
X



Frou (d,8) and (d.0) the valia of c and •f can be CAlculat*d to

A0 , tos 1 2 (-Y ) (L(cm+1)+ , ) ( d.M+1S

Fin-lly, from boundary rwndition (cl.6), i.e.

B(h, t•- uAO, t(70s (i6

where ja < land a' I

Wte Ialue ol Y can be determined as

3 xr o 2et n e o n tr

-M (1-Y (Cm+n (+')]
+ C (d.12)

i ~The finai expressions for area, density, and velocity distribution to be used in the numerical •

calculations are

A~~)=A,,e-Cx Mý-/-[ P ] •

-cx-t -- o tp ( .3

p(X,•) - 1 -- 2N ( - ) cm i - ]

+ ( e- e + + (d.14)

101

°~Yle-CX-' )-2c(l-y)x+(l-e -2CX) In+t 2<- 2.N_ 2 +

[cr,(i, -• +2(l-e-cx)] c n +t) y-

10



rl n

(f+t 1 2 (flYt (- I C-m+) (1N (.5

(n+tj2 ~ r~fcn

Q (1nk+1) n+t ,ti(fl1~

n~~t,} '.{I)Cm 1

Y- (d.16)

Case 11. Using expression (d.1) for this case, or

u(o, t) ft) mteflt +MO (d.i)

the resulting expressions for area, density, and velocity distribution to be used in the nunleri-

cal calculations are:

0(X, t) ~ cx+eCrX4l) [+el~rt2

+ (1-e2X-'CX) Cf (2(y-1 )cx 1 -2C X,

f2(-yV2 )e2 I Y C1 2 (.

"c2 (1) [112 4(Y2 +ie(d. 18)

+ [(2-.y)cx-i+e'2cx -y(e-C X-1] 2 (Y_1 (N

+LY-1 cx +Y( e-x- + cCP (-) f ' Y- I ') NX X



f mtent + n

fI fle~nt(ft+l)

Jfdt . m ent(nt-i) + m~t

[ •" cti -h)] (d.19) K
X. .- .

Sf(Y 
2)e(1V )CX dCm t-y)

f( -2 e--v) 1•-
u(,t) -- (y-iI Wj20)

Case 11i. Using expression (d.1) for this case, or

ulo,t) =f(t) em n (d)

the resulting expressions for area, density, and velocity distribution to be used in the

nucerical calculations are:

A ( x , t ) A 0 t Cs e c 1" -I [ 0 (d .2 1 ) =

P(X-t) { [ N- [2c(y-l)x + (i-e"cx) +2y(eCX-l)] +

+ -f~x 1-x] N [e-CXe -2CX] + [x-y-1)h)N-•cx + e-CX- ]
C C2

11I÷ .•cleX + 2(eCX _lijem(t+n)j + ct (v-),_ N.. (d.22)

12



wherewhere M Xr.(t+n) 
S

2-y

a e( " tl- e)n 1] + +

N = X, - M[C+ e- t+n)
(d.23)

m

m .. .tt+n)

(pae-ch) i -,) - r-- )t

e('-i )mt1 [c+1:-- eran] -  cm(tl+n)
2.-y2-

mfc-X1 ) e-CX

u(x,t) N fe-C+ e -1) (d.24)

Case IV. Using expression (d.1) for this case, or

u(o,t) = f(t•) - mo = const. (d.1)

the resulting expressions for area, density, and velocity distribution to be used in the

numerical calculations are:

A ( x , t ) E A . t;o,t e c x Il - -[ ] •( . 5

(xt) - m NH-'[(l-C)cx+e2CX -_1 y(e-CX-1f) +

+ mgN 2 M 2M[(y-1) cx -1 (e-2X-1) + yfeCX-i)) (d.26)

(e-CX 1) + (•s(-)-

2 y-1

13
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where

N e )Cmot[ji ech

e(-/- l )Cmo t 1 _1  (d.27)

1 e.Ch (-,(ey-I .)CMMt +)e (,.-',cmt,_-e( .}cm~t)

- e(-Y'-1)cob -)

u(xt) MeCX m0 NM- (1-ecx) (d.28)

In this case two of the boundary conuitions had to be modified as follows:

at X 0 anid t 0 A A0,t and P

and thus korj) E,,Ps

a t X = 11 and t o' A A and p Hp

and thus 9(h,o) = XAh'ops

and the constant c becomes

C
ti eA t

(E) MASS DISTRIBUTION OF REEDS AND COMBUSTIONW CHIAMER PRESSURE VARIATIOIN h
In the begirning of Air Inflow Analysis it was stated that the pressure variation on the

combustion chamber side of the reeds is calculated as a result of the analysis by additionally

satisfying the equation ol forced reed vibrationi

2 -TIH + mI r y- q(x~t) (e.x)
ax,

where
A

5'2w

w depth of reeds (e.2)

e=mass of reeds per unit length

q(x~t) forcing function, the differeice of the pressure forces on both
sides of the reeds.

14



For any prescribed mass distribution of the reeds used in the numerical calculations,

the pressure variation on the combustion chamber side of the reeds can be determined as

qc(x,t) qi(X,t) - -e.-)

where

hrq(x,t) =- pressure on combustion chamber aide of reeds (per unit length),

qi(x,t) = pressure on inflow side of reeds (per unit length).

(F) REMARKS ON NUMERICAL EXAMPLES

No numerical examples are included in this report similar to those given in Ref. 1 due

to the lack of time and personnel.

Judging from the experience gained during the work done on numerical calculations for

the hinged valves, Fef. I, and from the calculations made to date on the clamped valves,

there should be little if any difference in valve shapes, movement, velocity, pressure and

mass distribution between the clamped and hinged reed valves. Inspection of the valve motion

curves for the hinged reed valves, included in Ref. 1, shows virtually no change of the tan-

gent to the reed at the entrance section during the total movement. Thus, the main valve

motion is due to bending of the reeds during opening.

The expressions for the present case, though necessarily more involved, should result

in similar curves.

It should be of interest to the designer to have numerical exampleb worked out for the

i..lamped reed valves. Such exampý.es would facilitate the ciioice of valve design most suitable

for the particular problem of interest. No great difficulty is expected for trained per-

sonnel in doing such numerical computations as suggested in this paper. For the actual pro-

cedure the method used in Ref. I should be followed.

CONCLUSIONS

Numerical results wh, a may be obtained by means of the above analysis and those of

Ref. I involve laborious computations. To overcome this disadvantage, a method of approxi-

15



mation more suitable for engineering applications 6as been worked out together with nuwnrical

examples. These results will he reported in the near future.
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LIST OF SYMOLS

A - .'x,t) cross sectional area between a pair of reeds.

AO, 0  Aot cross sectional area at x ý o.

Ah,o cross sectional area at X = h and t o.

b constant in X(X) function.

B - B(x,t) = product of gas density and cross sectional area.
= 0(x,t)A(x,t)

C constant in X(X) function.

CS constant.

and cV specific heat of gas at constant pressure and constant volume
respectively.

f(t) U(O't) velocity function at x = O.

h length of reed.

k half distance between a pair of reeds at X = 0.

, (t),(t arbitrary functions of time arising in integrations.

m,m0 and n constant in f(t) function.

m* mass of reeds per unit length.

M and N wbbreviations for recui'ring expressions.

p = p(Xt) pressure of gas.

q - q(x,t) force per unit of length, forcing function of reed vibrations.

abbreviation for recurring function.

t. time variable.

opening time for reed movement.

S T(t) time function.

U u(x,t) velocity of flow in x direction.

v [T't)]("-)' time function.

w depth of reeds.

X space variable.

X(x) space function.
( A

y= y(x,t) dependent apace variable.

3. 17



subscript o free stream conditions.

subscript I inflow.

subscript c combustion chamber,

constant defined by equation (c.3).

arbitrary constant arising in integration.

Y adiabatic constant.
CV

a (x) tangent of reed at x = o.

X•t, X5  abbreviations for recurring functions,

/1., o, t, • constants.

o p(X,t) density of gas.

stagnation density.
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